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Introduction  
The Geological Survey (GS) held the Earthquake Feature Recognition Workshop and Field Trip 
II, the second of two opportunities offered by the GS to study paleoliquefaction features in 
eastern Arkansas. 

This workshop and field trip focused on the use of  geophysical surveys to locate features and 
documentation of paleoliquefaction. Feature identification may include soft sediment 
deformation structures present in the excavated trenches such as sand blows, dikes, sill, diapirs, 
foundered clasts, convolute bedding, pseudonodules, load casts, fissures, subsided, and tilted 
ground. The majority of the information within this publication has been prepared by the field 
trip leaders. 

This event started at the Holiday Inn Express & Suites on the afternoon of Tuesday, November 5, 
2020, with early morning briefings Wednesday. The field trip began mid-morning, Wednesday, 
November 6, 2019 near Marianna, Arkansas. Presenters and field trip leaders were a select group 
of subject matter experts in their fields including Dr. Haydar Al-Shukri and Dr. Martitia Tuttle.  
Pre-departure briefings preceded field trip activities. The field trip leaders presented information 
on the presence, manifestation, appearance, and characteristics of earthquake features in eastern 
Arkansas. 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

New Madrid Seismic Zone  
The New Madrid seismic zone (NMSZ) lies within the Mississippi Embayment, a large synclinal 
sedimentary basin formed during the Cretaceous due to reactivation of the northeast trending 
Cambrian-age Reelfoot Rift System (Figure 1) (Ervin and McGinnis, 1975). The embayment is 
filled with unconsolidated Upper Cretaceous and Cenozoic sediments, with thickness increasing 
from north to south. Modern microseismicity is spatially associated with several faults as follows 
(Figure 1): (1) the NE-SE trending zone located along the central axis of the Reelfoot Rift, also 
known as the Cottonwood Grove-Blytheville Arch or Axial Fault; (2) the NW-SE trending zone 
along the Reelfoot Fault; (3) the NNE-SSW trending zone along the North New Madrid Fault; 
and (4) the E-W trending zone along the Risco Fault. These faults are oriented favorably relative 
to the present east-northeast regional compressive stress field for right-lateral strike slip 
displacement to occur along northeast oriented faults and for reverse displacement to occur along 
northwest oriented faults (e.g., Zoback and Zoback, 1989). 

The New Madrid earthquakes of 1811-1812 are the largest earthquakes to have struck the 
conterminous United States in recorded history (Figure 1, stars).  The first main shock occurred 
at 2:15 a.m., December 16, 1811.  The two other large earthquakes occurred on January 23 and 
February 7, 1812.  All three mainshocks have estimated moment magnitudes in the mid-
magnitude 7 to 8 range (Johnston, 1996; Johnston and Schweig, 1996; Hough et al., 2000; Bakun 
and Hooper, 2004).  Epicentral Modified Mercalli Intensities (MMI) ranged from X to XII 
(Street and Nuttli, 1984).  Because of the low attenuation of seismic waves in the central United 
States, these three earthquakes had large (5,000,000 km2) felt areas (Nuttli, 1982; Nuttli and 
Herrmann, 1984) and were felt as far away as Boston, Massachusetts (distance of 1,690 km). In 
addition to the mainshocks, thousands of aftershocks were associated with the New Madrid 
earthquake sequence, many of which caused damage and were felt along the eastern seaboard 
(Street and Nuttli, 1984; Johnston, 1996). Since 1812 at least 28 damaging earthquakes having 
estimated moment magnitudes between 4.2 and 6.4 have struck the region (Nuttli, 1983; 
Hamilton and Johnston, 1990; Johnston, 1996). 

Although the exact locations of the 1811-1812 New Madrid earthquakes are unknown, their 
relationship to the NMSZ is strongly suggested by the isoseismal maps compiled from historical 
accounts (Nuttli, 1973) and the distribution of ground failures, particularly those related to 
liquefaction (Fuller, 1912; Saucier, 1977; Obermeier, 1984; Tuttle et al., 2002), and earthquake-
induced landslides (Jibson and Keefer, 1988; 1989; 1992). Liquefaction of subsurface sand 
layers resulted in the ejection of sand-bearing water through ground fissures, forming sand blow 
deposits typically tens of meters in width, hundreds of meters in length, and up to 2 meters in 
thickness (Fuller, 1912; Obermeier, 1988; Tuttle and Barstow, 1996). The Mississippi River was 
reported to have been choked with trees and the wreckage of boats in certain locations and 
massive bank failures (Penick, 1981).  The Reelfoot Fault and associated back thrusting probably 
displaced the bed of the Mississippi River at four locations (Purser and Van Arsdale, 1998).  At 
two locations, one upstream and one downstream from New Madrid, waterfalls or rapids formed 



 

 

in the Mississippi River channel (Penick, 1981; Purser and Van Arsdale, 1998). These 
displacements in the soft sediments in the river channel were apparently eroded and rapidly 
destroyed.  

Landslides along the bluffs bordering the Mississippi River valley happened from about Cairo, 
Illinois, to Memphis, Tennessee (Fuller, 1912; Jibson and Keefer, 1988). Eyewitnesses describe 
the land surface following the earthquakes as being disrupted and in many places, uninhabitable 
(Penick, 1981). 

               

Figure 1. Overview map of the NMSZ, showing locations of 1811-1812 mainshocks (white stars), 
seismicity from 1995-2015 (red dots), and Reelfoot Rift margins (purple lines), and local faults 
(thin white lines) (from DeShon, 2016, ADAMS ML 16221A590). 



 

 

Earthquake Potential of the New Madrid Seismic Zone  
In order to understand the hazards that the NMSZ may pose in the future, earth scientists have 
studied the geological and geophysical record of past earthquakes in the region. These studies 
have focused on paleoliquefaction features, active faults associated with the Reelfoot Rift Fault 
system, and the sedimentological record of uplift, subsidence, and abrupt changes in the 
morphology of the Mississippi River.  These independent studies have reached similar 
conclusions that the NMSZ has repeatedly produced large magnitude earthquakes during, at least, 
the past 4 kyr. Paleoseismic evidence indicates that the NMSZ produced 1811-1812-type events 
in about A.D. 900 and A.D. 1450 suggesting an average recurrence time of 500 years (Kelson et 
al., 1996; Tuttle et al., 2002; Guccione, 2005). Although less well understood, two earlier New 
Madrid events have been proposed to have occurred in 1000 B.C. (Holbrooke et al., 2004) and 
2350 B.C. (Tuttle et al., 2005). Holbrooke et al. (2004) suggested that the NMSZ is characterized 
by active and inactive periods, with inactive periods lasting about 1700 years. Alternatively, the 
paleoearthquake record may be incomplete prior to A.D. 800.  

Earthquake-induced liquefaction features, including sand blows and sand dikes, have been 
studied at more than two hundred sites across the New Madrid region (Figure 2; e.g., Saucier, 
1991, Vaughn, 1994; Li et al., 1998; Tuttle, 1999; Broughton et al., 2001; Tuttle et al., 2002 and 
2005; Tuttle et al., 2018 and 2019). During these investigations, the locations, sizes, and 
sedimentary characteristics of historic and prehistoric liquefaction features were documented, 
and organic samples collected for radiocarbon dating of the liquefaction features, and thus the 
earthquakes that formed them.  Both historic and prehistoric sand blows are compound structures 
composed of multiple fining upward units, suggesting they were formed during earthquake 
sequences that included several very large earthquakes (Saucier, 1989; Tuttle et al., 2002). The 
age estimates of sand blows across the region cluster around three dates which include A.D. 
1810 ± 130 years, A.D. 1450 ± 150 years, A.D. 900 ± 100 years. These time periods were 
interpreted as dates of New Madrid earthquakes (Figure 3). At several sites in northeastern 
Arkansas and southeastern Missouri, large sand blows were found which were estimated to be 
formed in 2350 B.C. ± 200 years, possibly during an earlier New Madrid event (Tuttle et al., 
2005). 

There is a close spatial correlation of both historic and prehistoric sand blows with the NMSZ, 
which was interpreted as the source of earthquakes responsible for most of the liquefaction 
features (Tuttle, 1999; Tuttle et al, 2002). Also, the size and spatial distributions of historic and 
prehistoric sand blows were found to be strikingly similar, suggesting that the prehistoric 
earthquakes were similar in location and magnitude to the 1811-1812 mainshocks (Figure 2). 
The Ambraseys (1988) relation between moment magnitude and epicentral distance to farthest 
surface manifestation of liquefaction (~240 km to farthest sand blows) suggests that the largest 

of the 1811-1812 earthquakes was of M ≥ 7.6.  Although the extent of the paleoliquefaction 

fields have not yet been determined, the similarity in the size and spatial distribution of 
prehistoric sand blows with historic sand blows suggests that the A.D. 900 and A.D. 1450 events 



 

 

are likely to have included at least one earthquake of M ≥ 7.6 (Tuttle, 2001). Geotechnical 

testing and analysis of liquefaction potential carried out at several liquefaction sites near 
Blytheville, Arkansas; and Steele, Missouri, found that sediments are not especially susceptible 

to liquefaction and that an earthquake of M ≥ 7.5 would be required to induce liquefaction at all 

of the sites (e.g., Schneider and Mayne, 2000). Overall, the liquefaction data indicate that the 
NMSZ generated sequences including very large, M7-8, earthquakes every 500 years on average 
during the past 1,200 years. The estimated uncertainties on the timing of each New Madrid event 
allow for the recurrence time of New Madrid events to be as short as 160 years and as long as 
1200 years (Cramer, 2001). 

Tuttle, et al., (2017) has used other geotechnical studies to estimate the magnitude of New 
Madrid events. Overall, the results are consistent with interpretations of the locations and 
magnitudes of historic and prehistoric earthquakes. Geotechnical studies including cone 
penetration techniques in northeastern Arkansas, southeastern Missouri, and western Tennessee 
generally shows that magnitudes in the range of M7.4 to 8.4 were likely to cause liquefaction the 
New Madrid region (Schneider and Mayne, 2000; Liao et al., 2002; Schneider et al., 2001; Stark, 
2002; Tuttle, 2004; Bakun and Hopper, 2004). 

Liquefaction studies contribute to comprehension of seismic hazard by providing information 
about the timing, locations, magnitudes, and recurrence rates of paleoearthquakes. There are 
uncertainties related to the derived earthquake parameters as many regions have not had any 
paleoliquefaction studies. More paleoliquefaction studies are essential to refine the uncertainties. 
Future studies should include instrumentation of liquefaction-prone sites, pre- and post-event of 
measurement of geotechnical properties. Other techniques include mapping using remotely 
sensed data, dating paleoliquefaction features, radiocarbon and optically-stimulated 
luminescence (OSL), dendrochronology, and geophysical surveys of soil properties. 



 

 

                             

Figure 2. Shaded relief map of the NMSZ and surrounding region showing ages and measured 
sizes of earthquake-induced liquefaction features, previously recognized liquefaction field, 
inferred locations of historic earthquakes and instrumental located earthquakes (from Tuttle, 
2010). Note the location of Marianna, Ar., about 80 km southwest of the southern end of the 
NMSZ. 



 

 

 

Figure 3. Diagram illustrating earthquake chronology for the New Madrid seismic zone for past 
5,500 years based on dating and correlation of liquefaction features at sites (listed at top) across 
region from north to south. Vertical bars represent age estimates of individual sand blows, and 
horizontal bars represent event times of 138 yr. B.P. (A.D. 1811-1812); 500 yr. B.P. + 150 yr. 
(A.D. 1450); 1,050 B.P. + 100 yr. (A.D. 900); and 4,300 yr. B.P. + 200 yr. (2,350 B.C.) (Tuttle 
and Hartleb, 2012).  

Recent Studies Pertinent to Workshop and Field Trip  
Tuttle (2001) discussed the use of liquefaction features in paleoseismology and offered lessons 
learned from the New Madrid seismic zone. She noted that to estimate the timing, source areas, 
and magnitudes of paleoearthquakes from liquefaction features, it is necessary to document 
many liquefaction features across a region and to constrain the ages of those features as closely 
as possible. This is achieved by conducting regional and detailed studies. It is critical to examine 
many sites in the area to determine the best sites for dating these features and to define the size 
and spatial distribution of the liquefaction features produced by each event. Detailed studies 
provide necessary data to limit the age estimates of liquefaction features. Given the current 
methodology of dating organic material in horizons that bound sand blows and the uncertainty in 
age estimates that results, Tuttle recommends that it would be desirable to develop high-
precision methods for dating liquefaction features directly. 



 

 

In the 2018 U.S. Nuclear Regulatory Agency report (Tuttle, et al., 2011, NUREG/CR-7238), the 
authors provide guidance on protocols for conducting paleoliquefaction studies for earthquake 
source characterization. These protocols are critical for the siting of nuclear power plants and 
other critical structures. This document provides detailed guidance for conducting 
paleoliquefaction studies that will generate high-quality paleoliquefaction data for use in seismic 
source characterization and seismic hazard assessment. It includes: 1) background information 
on earthquake-induced liquefaction, ground failures, and soft-sediment deformation features 
preserved in the geologic record, 2) relevant information derived from the disciplines of geology, 
geophysics, and geotechnical engineering, 3) extensive bibliography, and 4) recommendations 
for future research. 

An investigation conducted on an archeological site in the NMSZ yielded important information 
regarding earthquake liquefaction and ground failure, (Tuttle et al., 2011).  The study revealed 
compound sand blows (up to 1 m thick) and dikes (up to 12 cm wide) which formed during four 
closely timed earthquakes probably during the NMSZ earthquake sequence of A.D. 1450 + 150 
years. Liquefaction ground failure resulted in the tilting of to 22o of cultural horizons, and 
subsidence/burial of archeological components below the sand blow. The study concluded that 
by determining the style and amount of ground failure associated with the earthquake 
liquefaction, the study facilitated the identification of cultural features and horizons and 
interpretation of the archeological data. 

Paleoliquefaction studies facilitated the development of a paleoearthquake chronology of the 
NMSZ and better understanding of its earthquake potential, (Tuttle et al., 2002, 2005, and 2019). 
The findings have been interpreted to indicate the age estimates of the liquefaction features and 
the causative earthquake clusters happened around A.D. 1810 + 130 years, A.D 1450 + 150 years, 
A.D. 900 + 100 years, A.D. 0 + 200 years, 1050 B.C. + 250 years, and 2350 B.C. + 200 years. 
Sand blows in this study suggest that faults associated with the central branch of the seismic zone 
were responsible for the M > 7.6 earthquakes during the A.D. 900 and A.D. 1450 and 1811-1812. 
Liquefaction data indicated that NMSZ events have occurred on average every ~500 years during 
the past 1200 years and every ~1100 years during the previous 3300 years. This recurrence rate 
for very large events is not easily reconciled with small amount of crustal deformation observed 
in the region, suggesting that the NMSZ became active during the Late Holocene and that the 
NMSZ events may be temporally clustered in the intraplate region. The authors proposed that 
sequences of very large earthquakes will continue to happen at a rate similar to that of the recent 
past or every 500 years. 

A study of ground failures related to earthquake-induced liquefaction in the St. Francis River 
Basin focused on large curvilinear en-echelon sand blows and related feeder dikes that formed 
along abandoned channel margins, (Tuttle and Barstow, 1996). USACE borehole data were used 
to characterize the geologic relationships and properties of the depositional units at the study site. 
The findings supported the mechanisms of ground failure which are consistent with results of 
centrifuge modeling of liquefaction in layers sediments (Dobry and Liu, 1992; Fiegel and Kutter, 



 

 

1994). Sand dikes indicate water flowed up through the profile, fluidizing host sediment along 
the way. Sand sills exhibited ripple cross-bedding and silt laminations, emplaced along the base 
of the clayey overbank deposits suggests that water flowed and accumulated below the overbank 
deposits. Other features reveal foundering of clasts of the overlying channel-fill deposit into the 
underlying channel deposits in which a water-interlayer had likely formed. Further, low Standard 
Penetration Tests (SPT) counts in the upper part of the channel deposits also suggested the 
formation of water rich zone and loosening of the deposit. Spatial relations of sedimentary 
deposits and their permeability and thickness appear to influence the location and mode of 
ground failure. The authors note that a better understanding of factors contributing to 
liquefaction-related ground failures can help to identify sites that may be prone to large ground 
displacements and mitigate the hazard posed by earthquakes in the region. 

Ground penetrating radar (GPR) studies focused on imaging sand blow deposits and underlying 
feeder dikes in the vicinity of Marianna, Arkansas. Al-Shukri et al., (2006, 2015) used high 
resolution 3-D and profile surveys at several of these Marianna sites.  The GPR surveys imaged 
the contact between the sand blows and buried paleosurface, defining their morphology in order 
to optimize the siting of paleoseismic trenches. Due to field conditions, a 400 MHz antenna was 
necessary to provide high resolution images of the upper 5 m of soil. Data acquisition was along 
parallel profiles oriented normal to the long axes of the sand deposits. Data reduction and 
analytical procedures included the removal of direct and ground surface effects, frequency 
filtration, gain control, profile migration, and three-dimensional visualization. The geophysical 
surveys were followed by paleoliquefaction studies that verified the presence of sand blows and 
dikes, characterized the liquefaction features, and estimated the ages of their formation (Al-
Shukri et al., 2005, 2006 and 2015; Tuttle et al., 2006).  According to those studies, large sand 
blows formed as the result of large earthquakes around 4.8, 5.5, 6.8, 9.9 k.a, and possibly other 
events between 11-41 k.a. The sand blows were concentrated along a northwest-southeast 
oriented zone and likely delineate faulting at depth.  In addition, liquefaction potential analysis 
suggested that a M > 6 generated by the fault zone may have been responsible for the large sand 
blows in the area, (Al-Shukri et al., 2015). 

Odum, et al., (2016) discussed preliminary assessments of a previously unknown fault zone 
beneath the Daytona Beach Sand Blow Cluster near Marianna. In their paper, the authors identify 
what appears to be a northwest-southeast trending zone of fault(s) beneath the cluster of sand 
blows.  They suggest that the fault zone is a possible source of the Late Quaternary earthquakes 
responsible for the Marianna sand blows. 

A comparison study between the liquefaction induced during the 2010-2011 Canterbury 
earthquake sequence in New Zealand and the NMSZ earthquake events (Tuttle, et al., 2017) 
included these lessons learned: 1) liquefaction features are important indicators of fault ruptures 
are difficult to recognize or do not propagate to the surface, 2) site conditions such as 
susceptibility of sediment to liquefaction and water table depth influence sand blow distribution, 
and 3) the sequence of closely-timed earthquakes produced compound sand blows composed of 



 

 

several sand-silt couplets, corroborating previous interpretations of compound sand blows in the 
NMSZ in the central United States and elsewhere; characteristics of sand blows including 
internal stratigraphy have important implications for interpretation of number, locations and 
magnitudes of paleoearthquakes. 

References Cited 
Al-Shukri, H.  J., Lemmer, R. E., Mahdi, H. H., and Connelly, J.B., 2005, Spatial and temporal 

characteristics of paleoseismic features in the southern terminus of the New Madrid 
seismic zone in eastern Arkansas: Seismological Research Letters, v. 76, no. 4, p. 502-
511. https://doi.org/10.1785/gssrl.76.4.502. 

Tuttle, M. P., R. Hartleb, R. Wolf, L., and Mayne, P.W., 2019, Paleoliquefaction studies and the 
evaluation of seismic hazard: Geosciences, v. 9, no. 7, p. 311.  
doi:10.3390/geosciences9070311.   

Tuttle, M. P., Wolf, L.W., Starr, M.E., Villamor, P., Lafferty, R.H., Morrow, J.E., Scott, R.J., 
Forman, S.L., Hess, K., Tucker, K, Dunahue, J., and Haynes, M.L., 2019, Evidence for 
large New Madrid earthquakes about A.D. 0 and B.C. 1050, Central United States: 
Seismological Research Letters, v. 90, no. 3, p. 1393-1406.  

Tuttle, M. P., Wolf, L.W., Mayne, P.W., Dyer-Williams K., and Lafferty, R.H., 2018, Guidance 
document: Conducting paleoliquefaction studies for   source characterization: 
(NUREG/CR-7238). U.S. Nuclear Regulatory Agency.  

Tuttle, M. P., Wolf, L.W., Dyer-Williams, K., Mayne, P.W., and Lafferty, R.H., 2019, 
Paleoliquefaction studies in moderate seismicity regions with a history of large 
earthquakes: (NUREG/CR-7257). U.S. Nuclear Regulatory Agency. 

 

 

 

 

 

 

 

 

 



 

 

Workshop & Field Trip Abstracts and Activities  
Dr. Roy Van Arsdale will give a dinnertime presentation titled “Pliocene and Quaternary 
Geologic History of the Northern Mississippi Embayment and its Implications for the New 
Madrid Earthquakes”; at the Crazy Donkey Grill in Palestine, Arkansas Tuesday evening, 
November 5. 
 
The November 6 field trip will be focused on a region (Figure 1) of paleoliquefaction features 
located southwest of Marianna, Arkansas. Figure 2 shows four sandblows (DBNW2, DBNW3, 
DBNW4 and DBNW5) which have been identified for purposes of this field trip. Not all will be 
observable due to the poor field conditions. 
 

 
Figure 4.  Google Earth image. General map showing Marianna, Arkansas and location of 
Paleoseismology field trip. 



 

 

 

Figure 5.  Google Earth image of paleoliquefaction sites to be visited (DBNW2, DBNW3, 
DBNW4). The trench site DBNW3 will be studied in detail. North is at the top of the page. 

 
Holiday Inn Express & Suites, Forrest City, AR 
Time: 0700-0715 
Use of Scanning Total Station to Document Trenches 
 
James Evans, P.E., Geotechnical Regional Technical Specialist for the Mississippi Valley 
Division in the Memphis District-Geotechnical Engineering Branch, United States Army Corps 
of Engineers (USACE) 
 
We will evaluate the potential useful benefits of mapping paleoliquefaction trench walls using a 
scanning total station. The scans of the trench walls performed by this equipment include both 
geo-referenced photo images and very high resolution, multi-beam laser scanning of the trench 
walls. The photos and scans are integrated together to provide a colored survey scan of the trench 
walls. We are also evaluating the potential to distinguish varying soil type based on the intensity 
of the reflected laser.   
 
Time: 0715-0745 
Studies of Earthquake Related Features using Ground Penetrating Radar 



 

 

Dr. Haydar Al-Shukri, Professor, Department of Physics, Director of the Arkansas Earthquake 
Center, Dr. Hanan Mahdi, Research Professor, and Rauf Hussein, Ph.D. candidate, University of 
Arkansas, Little Rock. 
 
Ground Penetrating Radar (GPR) is a powerful tool to study earthquake-related features such as 
sand blows and faults. The primary goal of using GPR is to locate feeder dikes of sand blows and 
to image the contact between sand blows and the buried paleo-surface in order to optimize the 
location of trenches.  A secondary goal is to image the sand blows in three dimensions to define 
their sizes and morphology. Trenching large sand blows is costly and provides a limited view of 
the overall structure. GPR helps to identify possible locations for the venting dikes and to 
visualize the subsurface features.  It also helps to map the locations of tree stumps in the sand 
blows that are useful for dating. 
 
In the GPR surveys of large elliptical sand deposits near Marianna, Arkansas, we imaged sharp 
contacts in near-surface sediments that were confirmed in trenches to represent boundaries 
between sand blows and buried soils.  One survey in particular showed a sharp discontinuity in 
the boundary related to a large feeder dike.  Because sand thickness was no more than 4 meters, a 
400-MHz antenna was used.  This antenna is designed to provide high-resolution images of the 
upper 5 meters of soil.  Data acquisition was along parallel profiles oriented normal to the long 
axes of the sand deposits at all sites.  Data reduction and analysis procedures included removal of 
direct and ground surface effects, frequency filtration, gain control, profile migration, and three-
dimensional visualization.  We will run GPR surveys near open trenches to demonstrate the 
correlation between GPR profiles and the actual trench features.  This will also validate the 
effectiveness of GPR in such studies. 
 
Time: 0745-0815 
Paleoliquefaction Studies 
 
Dr. Martitia Tuttle, Director and Principal Investigator, M. Tuttle & Associates 
 
The study of paleoliquefaction is a geo-forensic science that documents, dates, and analyzes soft-
sediment deformation features and related ground failures that resulted from liquefaction induced 
by large earthquakes in the past. Evidence of these paleoearthquakes may be preserved in the 
geologic record for tens of thousands of years in the form of sand blows, dikes, and other soft-
sediment deformations features.  Paleoliquefaction studies provide information about the timing, 
location, magnitude, and recurrence times of large paleoearthquakes.  This information is used to 
identify potential sources of future earthquakes, to characterize the earthquake potential of those 
sources, and to estimate seismic hazard.  Paleoliquefaction studies are especially helpful in 
regions where recurrence times of large earthquakes are longer than the historical record of 
earthquakes and where seismogenic faults may not rupture to the ground surface. Examples of 



 

 

earthquake-induced liquefaction features and their use in seismic hazard assessment will be 
drawn primarily from paleoliquefaction studies in the New Madrid seismic zone and the 
Marianna area. 
 
Field Trip, Marianna, AR 
Time: 0915-0945 
Assessment of Cyclic Behavior of Mississippi Embayment Sand Based on Cyclic Triaxial Tests 
 
Hamed Tohidi, Graduate Research Assistant, Department of Civil Engineering, The University 
of Memphis, Memphis, TN 38152 and David Arellano, Associate Professor, Department of Civil 
Engineering, The University of Memphis, Memphis, TN 38152 
 
The simplified procedure for evaluating the soil liquefaction potential of cohesionless soils is 
based on estimating the cyclic stress ratio (CSR) from an empirical relationship that is based on 
the cyclic triaxial test results of Sacramento River, California sand. Grain size analysis results 
indicate that the grain size distribution of Mississippi Embayment sand from Vicksburg, 
Mississippi is different than Sacramento River sand. 
 
Soil properties that influence liquefaction potential and cyclic behavior include grain size 
distribution, grain shape, mineral composition, and age. Therefore, the hypothesis that this study 
will evaluate is that the cyclic behavior of Mississippi Embayment sand is different than 
Sacramento River sand and, consequently, the CSR based on cyclic triaxial tests of Mississippi 
Embayment sand will be different than the current simplified method of determining CSR that is 
based on cyclic triaxial tests on Sacramento River sand. For this study, it has proposed to obtain 
sand samples from various locations in the MS Embayment and from trenches displaying 
remnants of liquefied sand to perform cyclic triaxial tests and to evaluate CSR. 
 
Time: 0945-1200 
Studies of Earthquake Related Features using Ground Penetrating Radar 
 
Dr. Haydar Al-Shukri, Professor, Department of Physics, Director of the Arkansas Earthquake 
Center, Dr. Hanan Mahdi, Research Professor, and Rauf Hussein, Ph.D. candidate, University of 
Arkansas, 2801 S. University Ave., Little Rock, Arkansas, .72204. 
 
Ground Penetrating Radar (GPR) is a powerful tool to study earthquake-related features such as 
sand blows and faults. The primary goal of using GPR is to locate feeder dikes of sand blows and 
to image the contact between sand blows and the buried paleo-surface in order to optimize the 
location of trenches.  A secondary goal is to image the sand blows in three dimensions to define 
their sizes and morphology. Trenching large sand blows is costly and provides a limited view of 
the overall structure. GPR helps to identify possible locations for the venting dikes and to 



 

 

visualize the subsurface features.  It also helps to map the locations of tree stumps in the sand 
blows that are useful for dating. 
 
In the GPR surveys of large elliptical sand deposits near Marianna, Arkansas, we imaged sharp 
contacts in near-surface sediments that were confirmed in trenches to represent boundaries 
between sand blows and buried soils.  One survey in particular showed a sharp discontinuity in 
the boundary related to a large feeder dike.  Because sand thickness was no more than 4 meters, a 
400-MHz antenna was used.  This antenna is designed to provide high-resolution images of the 
upper 5 meters of soil.  Data acquisition was along parallel profiles oriented normal to the long 
axes of the sand deposits at all sites.  Data reduction and analysis procedures included removal of 
direct and ground surface effects, frequency filtration, gain control, profile migration, and three-
dimensional visualization.  We will run GPR surveys near open trenches to demonstrate the 
correlation between GPR profiles and the actual trench features.  This will also validate the 
effectiveness of GPR in such studies. 
 
Time: 1300-1700 
Paleoliquefaction Studies 
 
Dr. Martitia Tuttle, Director and Principal Investigator, M. Tuttle & Associates 
 
The study of paleoliquefaction is a geo-forensic science that documents, dates, and analyzes soft-
sediment deformation features and related ground failures that resulted from liquefaction induced 
by large earthquakes in the past. Evidence of these paleoearthquakes may be preserved in the 
geologic record for tens of thousands of years in the form of sand blows, dikes, and other soft-
sediment deformations features.  Paleoliquefaction studies provide information about the timing, 
location, magnitude, and recurrence times of large paleoearthquakes.  This information is used to 
identify potential sources of future earthquakes, to characterize the earthquake potential of those 
sources, and to estimate seismic hazard.  Paleoliquefaction studies are especially helpful in 
regions where recurrence times of large earthquakes are longer than the historical record of 
earthquakes and where seismogenic faults may not rupture to the ground surface. Examples of 
earthquake-induced liquefaction features and their use in seismic hazard assessment will be 
drawn primarily from paleoliquefaction studies in the New Madrid seismic zone and the 
Marianna area. 
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Post Workshop/Field Trip Supplemental Materials 
Two categories of supplemental materials from this workshop have been incorporated into this 
publication: 1) PowerPoint presentations, 2) Documentary. The PowerPoint presentations are 
attached below. James Evans presentation consisted of a movie (attached as a separate file). 
Through the assistance of funding from the RISC grant, and generosity of Historical Attractions, 
the GS and Historical Attractions developed a documentary designed to focus on public 
earthquake emergency preparedness and awareness.  The documentary is provided as separate 
digital attachment/file to this report. 
 

 



Pliocene and Quaternary Geologic History of the Northern Mississippi 
Embayment and its Implications for the New Madrid Earthquakes

Roy Van Arsdale
Department of Earth Sciences

The University of Memphis
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The Mississippi embayment



New Madrid seismic zone in 
northern Mississippi 
embayment.  Stars are large 
earthquakes of 1811-1812.



Cambrian formation of the Reelfoot Rift, Rough Creek Graben, and Rome Trough.

Basement 
Structure.



NW trending Proterozoic faults and NE trending Cambrian Reelfoot rift faults.



Dow seismic reflection line 143E across eastern Reelfoot rift margin faults north of Memphis.
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Formation of the Mississippi 
embayment



Formation of the Mississippi 
Embayment by the Bermuda 
hotspot
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The Mississippi embayment is a 
south-plunging erosional trough 
inset into and anticline in the 
Paleozoic strata.  Limbs dip less 
than 1 degree and plunge is ~ 1 
degree.  It is flat as a board and 
not a structural syncline.



Pliocene Mississippi River Drainage Basin



Pliocene ancestral 
Mississippi River system 
preserved as ~ 3.2 Ma 
Upland Complex alluvium.



Pliocene terrace alluvium (Upland Complex) of the 
ancestral Mississippi River beneath Pleistocene 
loess.  

Exhumed Pliocene ancestral Mississippi River 
meander bends.  Meanders are much larger in radius 
than modern Mississippi River meanders.



Pliocene Mississippi River drainage basin greatly 
modified by Pleistocene glaciation



Growth of continental ice sheets in Antarctica and Greenland 
lowered sea level 3.5 Ma and growth of continental ice sheets 
multiple times during the last 2.5 Ma lowered sea level even 
more.



Upland Complex is the basal facies of a much 
thicker (~ 150 m) Pliocene Mississippi River 
floodplain.



A.Upland
Complex 
formation

B.Pleistocene
erosion of UC

C.Isostatic uplift 
of Mississippi 
Valley

D.Erosion of the 
Eastern and 
Western 
Lowlands and 
loess load 
isostatic 
adjustment



UC is the basal 
facies of an 
originally ~ 150 m 
thick Pliocene 
Mississippi River 
alluvial section.



Deepest Pleistocene river incision immediately east of Crowley’s 
Ridge with source from Cache Valley in IL.  Note up-to-east step 
on valley floor in eastern lowlands.



Recent research indicates that 30 m of 
sediment was removed from above 
the NMSZ within last 20 ka (Van 
Arsdale et al., 2014).



Planar trend surface of the base of 
the Pliocene (3.2 Ma) Mississippi 
River floodplain (Upland Complex) in 
western KY and TN and Crowley’s 
Ridge, AR.Terrace ages diminish away from 

Crowley’s Ridge

Quaternary Mississippi River Valley is Rising



Quaternary stream migrations. Arrows denote averaged migration directions. 
Gray dots denote New Madrid seismic zone epicenters  



Calais et al argue that Mississippi River incision during the 
late Wisconsin would have reduced the horizontal 
compression across the NE trending Reelfoot Rift faults 
thereby activating them in the Holocene.  I now think 
there was 30 m of denudation within the last 20 ka.



Published sites of Quaternary Faulting and/or Liquefaction



Joiner Ridge faulting (current SRL)









Joiner Ridge faulting started ~ 19 ka and ceased ~ 7 ka.



Coring through the Mississippi River alluvium to  collect 
samples for OSL dating and age determination of the 
alluvium.  Project objective is to document Quaternary 
displacement history on the Meeman-Shelby fault.



Figures in this presentation by Roy Van Arsdale are from the following publications.

Cox, R.T. and Van Arsdale, R.B., 2002, The Mississippi Embayment, North America: a first order continental structure generated by the 
Cretaceous superplume mantle event.  Journal of Geodynamics, v. 34, p. 163-176.

Parrish, S., and Van Arsdale, R., 2004, Faulting along the southeastern margin of the Reelfoot rift in northwestern Tennessee revealed in 
deep seismic reflection profiles.  Seismological Research Letters, v. 75, p. 782-791.

Van Arsdale, R., and Cox, R., 2007, The Mississippi’s Curious origins.  Scientific American, v. 296, n. 1, p. 76-82.

Van Arsdale, R.B., Bresnahan, R.P., McCallister, N.S., and Waldron, B., 2007, The Upland Complex of the central Mississippi River valley: 
its origin, denudation, and possible role in reactivation of the New Madrid seismic zone.  In Continental Intraplate Earthquakes: Science, 
Hazard, and Policy Issues, S. Stein and S. Mazzotti (eds.), Geological Society of America Special Paper 425, p. 177-192.

Csontos, R., Van Arsdale, R., Cox, R., and Waldron, B., 2008, The Reelfoot Rift and its impact on Quaternary deformation in the central 
Mississippi River Valley.  Geosphere, v. 4, n. 1, p. 145-158.

Csontos, R., and Van Arsdale, R., 2008, New Madrid seismic zone fault geometry.  Geosphere, v. 4, p. 802-813.

Calais, E., Freed, A.M., Van Arsdale, R., and Stein, S., 2010, Triggering of New Madrid seismicity by late-Pleistocene erosion. Nature, v. 
466, p. 608-611.

Van Arsdale, R., and Cupples, W., 2013, Late Pliocene and Quaternary deformation of the Reelfoot rift. Geosphere, v. 9, n. 6, p.p1819–
1831.

Van Arsdale, R., Cupples, W., and Csontos, R., 2014, Pleistocene–Holocene transition in the central Mississippi River valley.  
Geomorphology, v. 214c, p. 270-282.

Cox, R.T., Lumsden, D.N., and Van Arsdale, R.B., 2014, Possible relict meanders of the Pliocene Mississippi River and their implications.  
Journal of Geology, v. 122, p. 609-622.

VanArsdale, R.B., Cox, R.T., and Lumsden, D.N., 2019, Quaternary Isostatic Uplift in the Northern Mississippi
Embayment, Journal of Geology, v. 127, no. 1, p. 1-13.

Price, A.C., Woolery, E.W., Counts, R.C., Van Arsdale, R.B., Larsen, D., Mahan, S.A., and Beck, E.G., 2019, Quaternary Displacement on 
the Joiner Ridge Fault, Eastern Arkansas. Seismological Research Letters, v. 90, n. 6, p. 2250-2261.



BUILDING STRONG®
and Taking Care of People!

PALEOLIQUEFACTION 
TRENCHING INVESTIGATION 
USING SCANNING TOTAL 
STATION RESULTS

Jamie Evans, PE
Geotech RTS, MVM
17 June 2020



2

BUILDING STRONG®
and Taking Care of People!

INTRODUCTION

• The Memphis District Geotech Branch has collaboration on several 
liquefaction related research projects in Arkansas in recent years 
with the Arkansas Geological Survey (AGS).

• Over the last decade, the AGS has funded and overseen the 
excavations of several paleoliquefaction trenches near Marianna, 
Arkansas (southwest of Memphis) in conjunction with the University 
of Arkansas-Little Rock. 

• The Memphis District had recently procured a Trimble SX10 
scanning total station, and we were interested in utilizing its 
capabilities in various ways beyond general surveys.

• In order to experiment with the capability of the SX10, we offered 
our survey services to scan the trench wall with the intent of 
providing a 3D high resolution image with associated survey as a 
potential means of replacing or minimizing manual logging of the 
trench stratigraphy.

• We performed preliminary field testing on 05Nov2019 for two 
trenches that had been previously excavated. 
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GENERAL SEISMIC SETTING

• Wide spread liquefaction features are prevalent throughout the New 
Madrid Seismic Zone (NMSZ) predominately located in southeast 
Missouri, northeast Arkansas, and northwest Tennessee. The extent 
of these features generally ranges from approximately New Madrid, 
Missouri to Marked Tree, Arkansas.

• These liquefaction features are generally concentrated along the 
areas associated with faulting in the NMSZ as defined by recorded 
and historical seismic events. 

• Most of the NMSZ liquefaction features have been dated to be 
associated with earthquakes that have occurred within the last 
2,000 years at intervals of about 500 years.

• Multiple liquefaction features have also been discovered in the 
Marianna, Arkansas area, which are more than 100 km from the 
majority of liquefaction features in the currently active portions of the 
NMSZ.
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LOCAL SEISMIC SETTING

• The AGS team has been evaluating these Marianna liquefaction features using 
archeological surveys, geophysical surveys, and paleoliquefaction trenching with the 
intent of assessing the source, magnitude, and generalized recurrence interval of the 
seismic events which generated these liquefaction features.

• The liquefaction features were initially identified using aerial photos looking for areas of 
sand deposits (generally areas where crops will not grow).The team has identified a 
generally northwest trending linear alignment of liquefaction features covering 
approximately 4 km.

• Dating from these features suggest the earthquakes that generated the features are 
prehistoric and date from approximately 5,000 to 41,000 years ago.

• Seismic reflection testing of the soft sediment faulting indicates the presence of a fault 
seismic source along the identified alignment of the liquefaction features, known as the 
Daytona Beach Lineament (DBL). It is currently postulated that this fault is inactive.

• Many of the liquefaction features are similar in size to those in the NMSZ (600m x 450m x 
2.5m). This indicates very strong ground shaking. The moment magnitude of the seismic 
events that caused these features has been estimated to be in the range of 6 to 7 (similar 
to NMSZ events) occurring along the DBL feature.     
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LIQUEFACTION FEATURE - SAND BLOW
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PALEOLIQUEFACTION TRENCHING
• Initial field work consisted of a GPR survey to locate the trench such that the 

sand dike was exposed in the trench.

• The trenches were then excavated (~4-6 ft) with vertical sides and the walls 
stabilized as necessary. The excavation walls were troweled smooth and 
then mapped by hand using graph paper and colored pencils.
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SX10 SCANNING TOTAL STATION

• The scanning total station combines surveying, 
imaging, and high speed 3D scanning for the 
defined area of interest.
• A suite of high resolution still photos is taken 

which are geo-referenced in order to 
generate a complete photograph of the 
survey area.

• A multi-beam laser survey is conducted for 
the survey area.

• The survey and imagery are processed 
together to produce a 3D image of the survey 
area.

• The intensity of the return multi-beam scan is 
also recorded for evaluating the survey data.   
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SX10 FIELD WORK

• One scan was performed for each trench.

• The total station was setup near the top of the 
trench and only one wall of the trench was 
scanned.

• Nails were inserted into the trench wall at 
boundaries between different soil layers.

• Each scan took approximately 20 minutes to 
complete. 
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SCANNING TOTAL STATION RESULTS
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RESULTS/CONCLUSIONS

• This method provides high quality imaging and survey data in a very 
short timeframe, which is a benefit where conditions make the 
trench unstable.  

• The original intent was to provide a survey quality, high resolution 
geo-referenced 3D image of the trench; however, the intensity 
image also provided valuable information to help distinguish soil 
layers. 

• More testing is needed to determine the relationship between return 
intensity, soil type, and moisture content.

• Multiple scans per trench would eliminate ‘shadows’ in the data.

• These results were well received by the trenching team.

• This methodology has other geotechnical/geophysical applications 
including post failure investigation, possible surficial seepage 
mapping of embankment, test pit logging, inspection of completed 
works, etc.    
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OTHER SX10 PROJECT EXAMPLES



Earthquake Feature Recognition

Ground Penetrating Radar

Haydar Al-Shukri, Rauf Hussein, Hanan Mahdi, and Martitia Tuttle

AGS Training Workshop

Forrest City, AR

November 6, 2019



Study Area



Nancy 1



Typical Sand Blow in the Study Area





Ground Penetrating Radar

Applications of GPR:

Hydrology

Archaeological applications

Highways and road investigations

Geological applications

Environmental applications

Engineering and geotechnical applications

Soil investigation

 Ground Penetrating Radar (GPR) is a 

geophysical tool used to investigate the 

subsurface through 2-D and 3-D high-

resolution images



GROUND PENETRATING RADAR “GPR”

Van Dam and Schlager, 2000



Ground Penetrating Radar

GPR Advantages: 

1. It is a non-invasive method.

2. Vehicle operated system that can be run at a normal traffic speeds.

3. Continuous profile measurements are efficient for large surveys 

4. Provides 2-D and 3-D high-resolution images.

5. Provides real-time analysis.

6. Powerful in detecting small changes in physical and electric properties 
of the material

7. Very sensitive to changes in the hydrological conditions of soil.



C
GSSI SIR-30 System

GSSI SIR-3000 System





Application to Paleoseismology 





Develop a Survey Plan



Ground Penetrating Radar System
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Comprehensive Analysis 
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Results 
• The sand blows concentrated near Marianna area

• The intensity (number and size) of sand blows reduced in all directions

• A new source zone

• Independent of the New Madrid SZ

• Has been extensively active in the past 5K years

• Our geotechnical analysis suggests that earthquakes in the M 6-6.5 

range could induce liquefaction and therefore be responsible for the 

formation of the large sand blows. 

• Several large earthquakes took place in the area

• The risk has not been evaluated yet

• The return period has not been determined and more research is need



Assessment of Cyclic Behavior of Mississippi Embayment Sand Based on Cyclic 
Triaxial Tests 

Hamed Tohidi 1, David Arellano2, Ashraf Elsayed3, Chris Cramer2, Shahram Pezeshk2, Roy Van Arsdale2, Stephen Horton2

The simplified procedure for evaluating the soil liquefaction potential of
cohesionless soils is based on estimating the cyclic stress ratio (CSR) from an
empirical relationship that is based on the cyclic triaxial test results of
Sacramento River sand. Grain size analysis results indicate that the grain size
distribution of Mississippi Embayment sand from Vicksburg, Mississippi is
different than Sacramento River sand.
Soil properties that influence liquefaction potential and cyclic behavior include
grain size distribution, grain shape, mineral composition, and age. Therefore,
this study will evaluate the following hypothesis: the cyclic behavior of
Mississippi Embayment sand is different than Sacramento River sand and,
consequently, the CSR based on cyclic triaxial tests of Mississippi Embayment
sand will be different than the current simplified method of determining CSR
that is based on cyclic triaxial tests on Sacramento River sand. For this study,
sand samples will be obtained from various locations in the MS Embayment and
from trenches displaying remnants of liquefied sand to perform cyclic triaxial
tests and to evaluate CSR.

Abstract:

Introduction and Background:

Seed and Idriss (1967) presented a general procedure for evaluating
liquefaction potential that consisted of the following steps:
1. Determination of shear stress time history produced by the earthquake.
2. Convert the stress time history of the earthquake into an equivalent

number of uniform stress cycles as a function of depth as shown by the
cyclic stress developed for N cycles by earthquake motions curve in Figure
1.

3. Estimation of the required number of cycles that induces liquefaction at
various depths based on the cyclic triaxial lab tests using the equivalent
number of uniform cycles from step 2 as shown by the cyclic stress causing
liquefaction in N cycles curve in Figure 1.

4. Determination of the liquefiable zones by comparing the shear stresses
caused by the earthquake from step 2 with the estimation of cycles that
induces liquefaction from step 3 as shown by the zone of liquefaction
designation in Figure 1 the zone of liquefaction is the zone where the
equivalent number of uniform stress cycles exceeds the cyclic stress
causing liquefaction.

Figure 1. Method of evaluating liquefiable zone

Acknowledgements:

References:

Methodology:

For this study it has proposed to obtain samples from various
locations in the MS Embayment and from trenches of liquefied sand of
the area. Cyclic triaxial tests will be performed on sand specimens at
Arkansas State University at various densities and confining stresses.
The MS embayment sand will be compared with the results of
Sacramento River Sand and the influence of the test results on CSR
will be determined.
The MS Embayment sand test results will be used with available field
test data of Western Tennessee to develop Liquefaction Probability
Curves (LPCs) and these LPCs will be compared with the LPCs
developed based on Sacramento River Sand test results inherent in
the current simplified method of liquefaction analysis.

Koester, J. P. (2018). “Triggering and post-liquefaction strength issues
in fine-grained soils.” Physics and Mechanics of Soil Liquefaction,
79–89.

Obermeier, S. F. (1989). “The New Madrid earthquakes; an
engineering-geologic interpretation of relict liquefaction
features.” Professional Paper.

Seed, H. B., and Idriss, I. M. (1967). “Analysis of Soil Liquefaction:
Niigata Earthquake.” Journal of the Soil Mechanics and
Foundations Division Proceedings of the American Society of Civil
Engineers.

Seed, H. B., and Idriss, 1. M. (1971). "Simplified Procedure for
Evaluating Soil Liquefaction Potential," Journal of the Soil
Mechanics and Foundations Division, ASCE, Vol. 97, SM9, pp.
1249-1273.

Seed, H. B., and Lee, K. L. (1966). “ Liquefaction of Saturated Sands
During Cyclic Loading.” Journal of the Soil Mechanics and
Foundations Division, 92(6), 105–134.

In 1971 Seed and Idriss simplified the general procedure for evaluating
liquefaction potential that consisted of three evaluations:
1. Simplified procedure for evaluating stresses induced by the

earthquake,
2. Simplified procedure for evaluating stresses causing liquefaction,
3. Evaluation of liquefaction potential.
To evaluate the stresses induced by an earthquake, the simplified
method consists of a relationship to compute maximum shear stress
(𝜏𝑚𝑎𝑥). In the initial equation of computing 𝜏𝑚𝑎𝑥, the behavior of a soil

column above the soil element at a depth of h was considered to be
rigid but, it is known that the soil column behaves as a deformable body,
hence a stress reduction coefficient (rd) was applied to the initial 𝜏𝑚𝑎𝑥

equation.
As shown in Figure 2, the magnitude of shear stress that occurs during
an earthquake in the field varies from cycle to cycle. Based on the shear
stress time history of the Niigata earthquake, Seed and Idriss
determined that the average shear stress induced by the earthquake
was about 65% of the maximum shear stress. Thus, they suggested a
reduction of 0.65 to equation of 𝜏𝑚𝑎𝑥 to estimate the average shear
stress ( 𝜏𝑎𝑣𝑒).

Figure 2. Shear stress time history of Niigata earthquake

Following the simplified procedure and by comparing the cyclic triaxial
test results with 𝜏𝑎𝑣𝑒 induced at any depth by an earthquake, Seed and
Idriss determined the liquefiable zones and expressed cyclic stress ratio

(CSR) causing liquefaction in the field in terms of
𝜏𝑎𝑣𝑒

𝜎𝑣
′ given by:

𝐶𝑆𝑅 =
𝜏𝑎𝑣𝑒

𝜎𝑣
′ = 0.65(

𝑎𝑚𝑎𝑥

𝑔
)(
𝜎𝑣

𝜎𝑣
′)𝑟𝑑 (1)

CSR is one of the main parameters of calculating Factor of Safety (FS)
against liquefaction as follows:

𝐹𝑆 =
𝐶𝑅𝑅

𝐶𝑆𝑅
(2)

Introduction and Background Continued:

Soil properties that influence liquefaction potential and cyclic behavior
include grain size distribution, grain shape, mineral composition, and
age (Obermeier, 1989). Since the grain size distribution of Niigata
sand was similar to Sacramento River sand, the cyclic triaxial test
results of Seed and Lee’s study (1966) on Sacramento River sand was
used in the simplified procedure. Figure 3 shows a comparison of
grain size distribution between Sacramento River sand and Mississippi
Embayment sand and the Figure indicates that the grain size
distribution curves of Mississippi Embayment sand is different from
Sacramento River sand. Therefore, this study will evaluate the
following hypothesis: the cyclic behavior of Mississippi Embayment
sand is different than Sacramento River sand and, consequently, the
CSR based on cyclic triaxial tests of Mississippi Embayment sand will
be different than the current simplified method of determining sand
using Equation 1 that is based on cyclic triaxial tests on Sacramento
River sand.

Methodology Continued:
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Figure 3. Comparison of the grain size distribution of Sacramento 
River sand and MS Embayment sand
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Paleoseismic Studies Using Geophysical Techniques: 

Sand Blow Features in Eastern Arkansas



Outline:

 What are Sand Blows?

 Why Do We Need to Study Them?

 What is Geophysics?

 Site Location

 Problem Statement and Main Objectives

 Significance of the Study

 Methodology and Data Collection:

▪ GIS Analysis

▪ GPR Analysis

▪ Paleoseismic Investigations (Trenching, Logging, Sampling, Dating and 
Magnitude Estimation)

 Results and Discussions

 Conclusions, Recommendations and Future Work
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What are Sand Blows?

Schematic showing a sand dike and sand blow (from USGS).

3

Photograph showing a sand dike in the Marianna area.

Silt
Silt

Sand Dike 

Silt

Silt

Silt

Silt

Photograph showing a sand dike in the Marianna area.



Why Do We Need to Study Them?
4

“The Past Informs the Future” (USGS).

The great earthquake at New Madrid (1811-1812)

(Howe, 2019).

Damage in Boston from 1755 Cape Ann earthquake 

(SSA, 2018).



What is Geophysics?  Gravity

 Magnetics

 Resistivity 

 Seismic 

 Ground penetrating radar (GPR)

Geophysics is a subject of natural science 

concerned with the physical properties of 

the Earth. 

Seismic Reflection (Sercel, 2020).GPR method (FPrimeC, 2016). Seismic waves travel through the 

earth (Arif, 2017).
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Location of the Study Area?

GIS Map Showing the Geographic Location of the Study Area.

Tectonic Setting of the Study Area by (Ebersole, n. d.).

Geologic Map of Lee County, Arkansas. Modified from (Haley, 1993).
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Marianna



Problem Statement and Main Objectives?

 Studies have shown that information about earthquakes is incomplete. 

 Other information is not totally understood.

 The objective of this study is to use GPR for sand blow investigations.

 The integration of GIS, satellite images as well as orthoimageries can be a powerful tool 

for sand blow studies.
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Significance of the Study? 8

 The findings of this study will improve the seismic risk assessment 

process for engineering applications.

Earthquake-resistant construction (EKU, 2020). 



Technical Approach and Data Collection:
9

Unprocessed GIS map showing a 30-cm resolution orthoimagery for the state of 

Arkansas. The yellow circles indicate the confirmed sand blows at Marianna area.

1- GIS Analysis:

 The confirmed sand blows: 

RGB values (>180).

 The surrounding area: RGB 

values (<180).
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Processed-reclassified GIS map showing the location of potential sandy surfaces at Marianna area.



 
Zoomed-in reclassified GIS maps showing sandy surfaces (red color) and non-sandy surfaces (green 

color): a) Potential sand blow at DBNW3, and b) Potential sand blow at DBNW5.
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2- GPR Application:

Schematic image showing reflection GPR mode.Complete GPR system.
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2.1– GPR Data Collection:

 Site 1 (DBSE1):

13

GPR data collected on Site-1 (DBSE1): a) GPR 

data of profile 1, and b) GPR data of profile 3.

GIS Imagery showing the location of GPR profiles (yellow 

solid lines) collected on Site-1 (DBSE1). The light-colored 

soils indicate the location of the potential sand blow.

 

This site is located about 2.6 km to the southeast of DB-Main. 

Profile 1

Profile 2

Profile 3



 Site 2 (DBNW2):

GIS Imagery showing the location of GPR profiles (yellow solid 

lines) collected on Site-2 (DBNW2). Black solid lines indicate 

the location of the planned trench sites.

GPR data collected on Site-2 (DBNW2): a) GPR 

data of profile 6, and b) GPR data of profile 9.
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This site is located about 0.5 km to the northwest of DB-Main.
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a
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Profile 10

Profile 11

Profile 12

Profile 13

Profile 14

North Trench

South Trench

 Site 3 (DBNW3):

GIS Imagery showing the location of GPR profiles (yellow 

solid lines) collected on Site-3 (DBNW3). Black solid lines 

indicate the location of the trench sites. White dotted line 

indicates the strike direction of the sand dike. 

GPR data collected on Site-3 (DBNW3): a) GPR 

data of profile 12, and b) GPR data of profile 11.

15

 

This site is located about 1.2 km to the northwest of DB-Main. 



 Site 4 (DBNW4):

GIS Imagery showing the location of GPR profiles (yellow 

solid lines) collected on Site-4 (DBNW4). Black solid line 

indicates the location of the planned trench sites.

GPR data of profile 20 collected on Site-4 (DBNW4).
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This site is located about 1.8 km to the northwest of DB-Main.

Profile 15

Profile 16

Profile 17

Profile 18



 Site 5 (DBNW5):

GIS Imagery showing the location of GPR profiles (yellow 

solid lines) collected on Site-5 (DBNW5). Black solid lines 

indicate the location of the trench sites. White dotted line 

indicates the strike direction of the sand dike. 

GPR data collected on Site-5 (DBNW5): a) GPR 

data of profile 24, and b) GPR data of profile 23. 
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This site is located about 6 km to the northwest of DB-Main, which is the farthest site 

so far discovered in that direction.



GPR data was used to identify trench locations at four sites: DBNW2, DBNW3, DBNW4, and 

DBNW5, respectively.
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 Summary of the GPR Results

 

Daytona Beach Northwest 2 Daytona Beach Northwest 3
Daytona Beach Northwest 4 Daytona Beach Northwest 5



 Trenching at Site 2 (DBNW2):

193- Paleoseismology Investigations:

3.1- Trenching:



 

 Trenching at Site 3 (DBNW3):

Photographs showing the trenches that were excavated at DBNW3: a) The southern trench 

(DBNW3S), and b) The northern trench (DBNW3N). The photographs point to the west.
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Photograph showing the strike direction of the sand dike at DBNW3.
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 Trenching at Site 4 (DBNW4):

Water Table
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GPR data collected at Site DBNW4 before heavy rain on the region. GPR data collected at Site DBNW4 after heavy rain on the region.



 Trenching at Site 5 (DBNW5):

Photographs showing the trenches that were excavated at DBNW5: a) The southern trench (DBNW5S), and b) 

The northern trench (DBNW5N).
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Photograph showing a large sand dike in the southern trench (DBNW5S).
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3.2- Logging: 25

 
Photographs showing the logging work at DBNW3: a) Logging at the northern 

trench (DBNW3N), and b) Logging at the southern trench (DBNW3S).

Logging at Site-3 (DBNW3)

Nails



 

Paleoseismological logs of  Site-3 (DBNW3)

 

Capture images showing the recorded and drawn logs 

in the field for site 3 (DBNW3): a) Log of the northern 

trench (DBNW3N), and b) Log of the southern trench 

DBNW3S) by (M. Tuttle, R. Hussein and H. Al-Shukri).

Adobe Illustrator figure showing paleoseismological

logs of DBNW3: a) Results from the logging at 

DBNW3N, and b) Results from the logging at 

DBNW3S.
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Logging at Site-5 (DBNW5)

 

Photographs showing the logging work at DBNW5: a) The northern trench that was 

completely flooded and collapsed, and b) Logging work at the southern trench.
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Paleoseismological logs of  Site-5 (DBNW5)

Adobe Illustrator 

figure showing a 

paleoseismological

log of DBNW5S.

Field log of DBNW5S 

by (M. Tuttle, R. 

Hussein and H. Al-

Shukri).
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Charcoal samples for event dating. 

Radiocarbon dating technique.

Sand samples for grain size analysis. Laser Diffraction technique.

Plow Zone

Sand Blow

Silt

Sand samples for event dating. Optically 

Stimulated Luminance (OSL) technique.

3.3- Charcoal, OSL, and Grain Size Sampling:

Light-proof tube



3.3.1- Charcoal and OSL Samples collected from Site-3 (DBNW3):

 

OSL1

OSL3

C1

C1

OSL1
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North Trench

South Trench



3.3.2- Charcoal and OSL Samples collected from Site-5 (DBNW5):

C1OSL1

OSL2
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South Trench



3.3.3- Sand samples collected from Site-3 (DBNW3) for grain-size analysis:
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 3.4.1- AMS Radiocarbon Dating Technique

3.4- Dating and Grain Size Techniques:

Heater Vaporizes 

the Sample
(Messer, 2017).
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 3.4.2- Optically-Stimulated Luminance Dating Technique

➢ 1- Measuring natural OSL Signal.

➢ 2- Calculating equivalent dose (De).

➢ 3- Measuring dose Rate.

➢ Calculating Sample age.

Quartz grains in sand 

(Munroe, 2017) .

Blue light injected onto a 

sand sample (Duller, 2020).

Signal-dose plot for one aliquot 

of one sample (Rittenour, 2017).
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 3.4.3- Laser Diffraction For Grain Size Measurements:

Principles of laser diffraction measurements (Hyll, 2015). 

Grain Size = λ /sin (θdark)



3.5- Magnitude Estimation: 3.5.1- Cone Penetration Testing (CPT) Method:

GIS Map Showing CPT Site Locations

The capacity of soil to resist liquefaction 

is represented by Cyclic Resistance Ratio 

(CRR).
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3.5.2- Cyclic Stress Method : 

Cyclic Stress Ratio (CSR): is the level of ground shaking 

from seismic loading
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(Dougherty, 2019)

Liquefaction Potential Analysis

• If CRR > CSR  =  Soil Will Not 

Liquify

• If CSR ≥ CRR  =  Soil Will 

Liquify



4.1.1- Trenching and Logging Results from 

DBNW3S:

4.1- Trenching and Logging Results:

384- Results and Discussions:

W E

Paleoseimological log of DBNW3S

GPR data collected at DBNW3S

DBNW3-South Trench



4.1.2- Trenching and Logging Results from DBNW3N: 39

W E

Paleoseimological log of DBNW3N
GPR data collected at DBNW3N

DBNW3-North Trench



4.1.3- Trenching and Logging Results from DBNW5S: 40

Paleoseimological log of DBNW5S

GPR data collected at DBNW5S

DBNW5-South Trench

W EW



4.2- Dating Results:

4.2.1- Dating Results from DBNW3: C1 (4,5-4,8 ka)

 

OSL1 (4,4-4,9 ka) 

OSL3 (12,7-13,8 ka)

C1 (0-304 yr)

OSL1 (12,1-12,9 ka)
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4.2.2- Dating Results from DBNW5-South Trench:

C1 (565-694 yr)OSL1 (12,6-15,2 ka) 

OSL2 (16,4-17,7 ka)
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4.3- Grain-Size Analysis Results From DBNW3S:
43



4.4- Magnitude Estimation Results:

Table Showing results of potential liquefaction analysis for site Lee 1 and site Lee 3. 

44

Moment Magnitude 

(Mw)

Liquefaction

(Water Table Depth 

1.5 m, and Distance 

to Fault 5 km)

Liquefaction

(Water Table Depth 

1.5 m, and Distance 

to Fault 10 km)

Liquefaction

(Water Table Depth 5 

m, and Distance to 

Fault 5 km)

Liquefaction

(Water Table Depth 5 

m, and Distance to 

Fault 10 km)

5.0 N N N N

5.5 N N N N

6.0 L N L N

6.5 L L L L

7.0 L L L L

7.5 L L L L



 GIS is a promising tool in selecting suitable locations for SBs.

 GPR has proven to be a powerful tool in selecting the most suitable area for 

trenching.

 Trench observations have confirmed the information collected from the GPR data.

 Marianna sand blows are of large sizes and this is most likely due to a local seismic 

zone which is the Marianna seismic zone (MSZ).

 Trench logging reveals the existence of many sedimentological features (lamellae 

and nodules).

5- Conclusions, Recommendations, and Future Work

5.1- Conclusions:
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 Dating results indicate that the Marianna sand blows formed prior to 4.8 ka.

 DBNW3 is on the younger side for the Marianna sand blows, whereas DBNW5 is on 

the older side for the Marianna sand blows.

 The MSZ produced at least three large paleoearthquakes about (4.8, 5.5, 9.9, and 

possibly 13.9 Ka).

 The Marianna sand blows were formed by at least a magnitude of 6 earthquake.

 Sand blow investigations have shown that sand blow long axes and sand dikes’ strike 

are southeast-northwest orienting and parallel to a lineament. The lineament is 12-

km long above a strike-slip fault and this is most likely the Marianna fault.
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 For optimal OSL results, it is recommended to collect samples immediately below 

the sand blow-buried soil contact.

 For smaller sand dikes, It is also recommended to use the 900-MHz antenna.

5.2- Recommendations:
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 Intensive GIS work will be conducted at the Marianna area.

 The north-south orienting cotton-field rows at site 1 (DBSE1) will be leveled.

 Prior to excavation work is performed at site 2 (DBNW2), shoaring will be prepared.

 The planned trench at this site 4 (DBNW4) will be excavated.

5.3- Future Work:
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